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The purpose of this note is to extend the outflow boundary condition treatment of previous work [1] to
include viscous and thermal conduction effects.

We consider a problem defined on Rn, and examine a boundary whose normal points in the xa direction.
The NSCBC [2] approach decomposes the a-direction flux term of the Navier–Stokes equations into
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La = {L1, L2, . . ., Ln+2}T is the vector of characteristic wave amplitude variations (or amplitudes hereaf-
where
ter), U is a vector of primitive variables, P is a transformation matrix relating primitive and conserved quan-
tities, Fi is the flux vector, and Sa is the matrix of left eigenvalues of P�1(Fa)U. There is no summation over
Greek indices. The amplitude vector is associated with n + 2 eigenvalues: a left-going and a right-going acous-
tic amplitude (denoted L1 and Ln+2 and propagating with speeds u � a and u + a, respectively), and n degen-
erate eigenvectors with propagation speed u representing convective transport.

We set n = 2 here, and consider a flow with spanwise periodicity and a bulk velocity of ub m/s. For an out-
flow located on the right-hand face of the domain, we have previously shown [1] that a new non-reflecting
boundary condition for equation set 1 of the form
L1 ¼ L4 þ ðc� 1ÞT
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does not introduce the spurious pressure oscillations associated with the NSCBC/LODI approach. D(1) is re-
ferred to as an acoustic divergence.
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In deriving Eq. (2), we have assumed that the flow physics evolve on two disjoint families of length scales:
inertial scales and acoustic scales. To separate these effects, we non-dimensionalize Eq. (1) and introduce a low
Mach number expansion for each of the dependent variables [3] (i.e. p = p(0) + Mp(1) + O(M2) for pressure,
where M is a suitably defined Mach number). We denote the inertial length scales as bxi and the acoustic length
scales as ni ¼ Mx̂i, and assume the two to be mutually independent. The derivatives appearing in the dimen-
sionless form of Eq. (1) can then be written as [4]
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The final step in the current approach is to make these substitutions into the definitions of the amplitudes
themselves. In so doing, the non-reflecting boundary condition proposed by Hedstrom [5] is seen to set all or-
ders of the amplitude definitions to zero. In contrast, the current approach allows us to retain the inertial ele-
ments of the amplitudes while still allowing transparent acoustic wave treatment.

Using the previous definitions, the acoustic term appearing in Eq. (2), is then defined as
Dð1Þ ¼ ouð0Þi

oni
: ð4Þ
We define the total divergence as D ” oui/oxi and assume that it can be calculated during a simulation using
some approximate numerical scheme. D(1) can be related to the dimensionless form D by introducing the
low Mach number decomposition to obtain
D ¼ Dð0Þ þMDð1Þ þOðM2Þ ð5Þ

Dð0Þ � ouð0Þi

ox̂i
; ð6Þ
where D(0) is referred to as the inertial divergence. For cold, low Mach number problems, we have D(0) = 0 (the
flow is solenoidal) and the acoustic divergence can be obtained immediately from D. As the parity between D(1)

and D is only true for cold flows, a more general prescription for D(0) is required for flows with strong thermal
gradients.

D(0) can be estimated through the pressure transport equation [6]:
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Inserting the low Mach number expansion into the dimensionless form of Eq. (7), and decomposing the deriv-
atives according to Eq. (3), we find that, to leading order:
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For problems involving large thermal gradients, we assume that T ð0Þ ¼ T ð0Þðx̂i; tÞ, and qð0Þ ¼ qð0Þðx̂i; tÞ. This
assumption is exact if the temperature and density gradients are produced by combustion. The leading orders
of the momentum equations provide p(0) = const. (providing the flow experiences no bulk compression) and
p(1) = p(1)(ni,t) [4]. It is straightforward to show that viscosity is an O(M2) term and has no effect on the two
leading order terms of the pressure equation; it can therefore influence neither D(0) nor D(1) and we conclude
then that the expression derived for D(1) in [1] for requires no modification to include purely viscous effects.

For more general flows at low Mach number on open domains and without bulk compression, the thermo-
dynamic pressure is constant in time and space. It follows from Eq. (8) that to leading order, the inertial diver-
gence in fully dimensional form can be approximated by
Dð0Þ ’ c� 1
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As in the inviscid case, the momentum equation is used to relate the incoming and outgoing amplitudes. For
the Navier–Stokes equations, the viscous terms must be included, and we therefore modify Eq. (2) (in fully
dimensional form)
Fig. 1.
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where both D and the thermal conduction terms are calculated by using some approximate numerical scheme
such as compact finite differences [7].

The acoustic transparency of the boundary conditions and their performance with respect to turbulent out-
flows has been established for cold viscous flows [8], where they have been found to have the same excellent
non-reflective behaviour as their inviscid counterparts. The inclusion of viscous terms on the outflow appears
to have little effect on the pressure field over the whole domain. This is consistent with the fact that viscous
terms are O(M2) and are thus attached to the inertial components of the flow. As such, they are convected
at the same speed as the entropy and vorticity waves. Provided the flow contains no strong recirculation at
the outflow, then any errors arising from an incorrect viscous flux specification will be convected out of the
domain without influencing the solution.

Fig. 1a–d shows the pressure evolution for two hot (�600 K) co-rotating vortices leaving a computational
domain that is 7.5 mm square in size. This configuration was chosen for two reasons; (a) there is an inertial
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Contour plots of pressure for twin co-rotating vortices approaching a revised non-reflecting outflow. Centres of vortices are heated
K. The pressure range satisfied �15 N/m2

6 p � p(0)
6 5 N/m2 throughout the simulation.
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evolution in the flow, arising from the two vortices wrapping asymmetrically around each other as the flow
develops and; (b) acoustic transients emerge from the initial conditions and conduction effects. The mean flow
speed ub was set to 10 m/s, and the two vortices were initialized using a stream function approach with a radius
set to 8% of the domain size. The ambient temperature was set at 300 K and, with the assumption that the
pressure was initially constant at p(0) = 101,325 N/m2, the density was calculated using the thermal equation
of state. The thermal conductivity was calculated using [9]
Fig. 2.
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:

For the inlet, a fixed velocity, non reflecting condition was imposed [1].
To obtain a reference solution, we doubled the streamwise length of the computational domain and applied

standard non-reflecting boundary conditions to the outflow. The vortex pair was allowed to propagate
through the extended domain, with the simulation terminating before the vortices approached the outflow
boundary. The reference solution was taken as the left half of the extended domain, and was compared to
the solution obtained using the new boundary conditions.

As can be seen from Fig. 1a–d, there is no significant distortion in the pressure distribution arising from the
boundary conditions. As the vortices wrap around each other, the resultant asymmetry in the pressure field is
well captured. This result is a considerable improvement on the solution calculated using the NSCBC
approach. Results from the latter are given in Fig. 2a–d. In the figures, the contours have been restricted
0 2 4 6
0

1

2

3

4

5

6

7

x (mm)

y 
(m

m
)

Time = 0 s

0 2 4 6
0

1

2

3

4

5

6

7

x (mm)

y 
(m

m
)

Time = 150 microseconds

0 2 4 6
0

1

2

3

4

5

6

7

x (mm)

y 
(m

m
)

Time = 250 microseconds

0 2 4 6
0

1

2

3

4

5

6

7

x (mm)

y 
(m

m
)

Time = 450 microseconds

Contour plots of twin co-rotating vortices approaching a standard non-reflecting outflow. Centres of vortices are heated to 600 K.
essure range satisfied �120 N/m2

6 p � p(0)
6 70 N/m2 throughout the simulation.
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to the same range as those in Fig. 1a–d. The pressure history of the two solutions is given in Fig. 3, where a
normalized pressure difference, defined as
Fig. 3.
condit
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is plotted as a function of time. We recall that pref is taken from the left half of the extended benchmark solu-
tion domain. We observe that throughout the simulation, the solution obtained with the new boundary con-
ditions remains close to the benchmark. Conversely, in the NSCBC case there are considerable transients in
the solution and, in the worst instance, the normalized pressure difference is about an order of magnitude lar-
ger than that obtained using the new approach.

The differences between the solution obtained with the new treatment and the benchmark appear to be
related to differences in the treatment of viscous and momentum boundary conditions. The importance of cor-
rect viscous flux specification for reacting flows has been explored by Sutherland and Kennedy [10]. In this
case, the condition imposed on the heat flux vector is likely to have the dominant effect on the flow. This is
due to the fact that the viscosity has only an O(M2) influence in the pressure distribution, while conduction
is leading order. The net effect of the thermal conduction boundary condition will depend on the mean flow
speed; as the mean flow decreases, the larger relative influence of viscous transport will have greater influence
on the pressure. This is true of all boundary condition treatments derived from the method of characteristics.

The new approach provides a significantly better treatment of the pressure field for viscous conducting
flows than do many previous characteristics based methods. The new treatment is able to deal with flows com-
prising inhomogeneous high temperature regions without inducing spurious effects. The scheme appears to be
50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Time (microseconds)

P
re

ss
ur

e 
er

ro
r

New boundary conditions
Standard non–reflecting conditions

Time evolution of the normalised pressure difference for: (—) the new boundary condition and (Æ – Æ) the standard non-reflecting
ion.



474 R. Prosser / Journal of Computational Physics 222 (2007) 469–474
stable for long time integration periods. Future work will examine further improvements of the method by (a)
reducing the (very small) pressure drift associated with characteristics-based methods, (b) further reducing the
effects of the viscous boundary conditions on the pressure field and (c) extending the treatment to incorporate
chemical reactions.
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